One Step Forward: Periodic Computation in Dynamical Systems
نویسندگان
چکیده
The nonlinear dynamics of chaotic circuits generate a rich spectrum of signals. This observation suggests that these circuits could potentially provide an implementation of a novel framework of computation. In support of this hypothesis, computational complexity of the nervous system is achieved in large part through the nonlinear elements of electrically excitable membranes. In this study, we characterize the structure of the integral periodic components of signals generated by the chaotic inductor-diode (LD) circuit using a novel periodic decomposition. Specifically, we show that simple sinusoidal inputs, when passed through the LD circuit, can be used to store discrete, multiplexed periodic information. Further research could reveal principles of a periodic form of computation that can be implemented on simple dynamical systems with qualitatively complex behaviors. It is our hope that insights into the biological organizing principles of the nervous system will emerge from a precise, computational understanding of complex nonlinear systems such as the LD circuit.
منابع مشابه
Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملLI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملAmplified Hopf Bifurcations in Feed-Forward Networks
In [18] the authors developed a method for computing normal forms of dynamical systems with a coupled cell network structure. We now apply this theory to one-parameter families of homogeneous feed-forward chains with 2-dimensional cells. Our main result is that Hopf bifurcations in such families generically generate branches of periodic solutions with amplitudes growing like ∼ |λ| 1 2 ,∼ |λ| 1 ...
متن کاملNumerical Continuation of Hamiltonian Relative Periodic Orbits
The bifurcation theory and numerics of periodic orbits of general dynamical systems is well developed, and in recent years there has been rapid progress in the development of a bifurcation theory for dynamical systems with structure, such as symmetry or symplecticity. But as yet there are few results on the numerical computation of those bifurcations. The methods we present in this paper are a ...
متن کاملA Symbolic Algorithm for the Computation of Periodic Orbits in Non–Linear Differential Systems
The Poincaré–Lindstedt method in perturbation theory is used to compute periodic solutions in perturbed differential equations through a nearby periodic orbit of the unperturbed problem. The adaptation of this technique to systems of differential equations of first order could produce meaningful advances in the qualitative analysis of many dynamical systems. In this paper, we present a new symb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009